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Abstract—A novel approach to DBMS design called In-Page 

Logging (IPL) was proposed a decade ago. The IPL system 

exploits characteristic of flash memory; asymmetric write/read 

speed. This approach manages per page log in erase unit of 

flash memory and avoids page write but saves redo log. When 

the page is required merge operation, which is instant recovery 

process, generates updated version of page using old page and 

its redo log. In fact this never has been implemented to real 

DBMS system since lack of fast, persistent, byte-addressable, 

and affordable device. Since NVDIMM matches with concept 

of IPL, we implemented IPL to PostgreSQL, a commercial 

open source DBMS, employing it as IPL log device. The 

experiment showed improvement of reducing write amount, 

which leads to performance gain and SSD lifetime increase. 
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I. INTRODUCTION 

SSDs are attracting attention because they are smaller in 
size, lighter in weight, stronger against shock, lower 
electricity consumption, less noise, and faster read/write 
performance than conventional HDDs. Currently, many 
SSDs are used in personal computers as well as data servers. 
With the development of technology, prices are dropping 
gradually, performance and capacity are getting better, and it 
is expected to be the most widely used storage replacing 
HDD. SSDs have several unique features. The NAND flash 
cell can only be used for a predetermined erase-program 
cycle, and has a minimum writing unit that is increased from 
SLC, MLC to TLC. These characteristics occur 
disadvantages in aspect of wearing and performance in 
environments where small random writes occur frequently, 
such as OLTP. Write amplification phenomenon, which 
changes write of few bytes to the write of several pages, also 
occurs, worsening the problem [1]. 

SSD also has asymmetric read/write speeds, which read 
is significantly faster than write. A decade ago, a novel 
approach to DBMS design called IPL was proposed [2]. The 
IPL system overcomes the difficulties of exploiting benefits 
of flash memory. Write/erase operations caused by small 
random writes have high latency. In order to avoid this, only 
per-page logs are stored in the storage, not the whole page, 
and eventually merged to database. When this method was 
introduced, it was promising but never applied to real DBMS 
due to the lack of memory device which is fast, persistent 
and affordable for byte-addressable small delta writing. 
Therefore, there have been attempts to apply it to byte-
addressable NVRAM such as PCRAM [3]. 

Adopting NVDIMM makes it possible to apply the new 
logging system previously. NVDIMMs have speed of 
DRAM, are persistent, and are cheaper than other NVRAMs. 
In fact, NVDIMM interface is supported by Linux, MS 
Windows, and hardware servers like HP ProLiant. It is the 
most realistic NVRAM solution and the most suitable 
storage for IPL concept. 

The composition of this paper is as follows. Chapter 2 
explains PostgreSQL tuple management system to help 
understanding following section. Section 3 introduces how 
IPLization of PostgreSQL was done as well as IPL approach. 
Section 4 analyzes the performance evaluation environment 
and results of the comparing original and modified system. 
Section 5 briefly present related works. We conclude the 
paper presenting future research. 

II. POSTGRESQL TUPLE MANAGEMENT 

A. PostgreSQL Page And Tuple Structure 

PostgreSQL manages user-created data in the form of 
heap data. Page contains item pointer and actual tuple, and 
tuple is accessible through item pointer. Each tuple 
represents a row of relations. Tuple has value called tmax 
and tmin which are given at creation and deletion. When 
performing an insert, a new tuple is created on a empty space 
in page. When a delete is performed, only the delete mark is 
set, and the tuple data is not deleted. Update operation is 
equivalent to performing delete and insert once each. To take 
care of continuously growing size of heap data, PostgreSQL 
frees the space of deleted tuples through vacuum operation. 
Fig .1 is the result of performing three DML queries to an 
empty page. TID states for transaction ID.  
 

 
  
 
 

Figure 1. Result of executing 3 transactions. 



(1) TID1 : Insert A, B           
(2) TID2 : Delete A  

(3) TID3 : Update B to B’ 

 
Executing (1) creates tuple A and B and assigns tmin 

value 1. Executing (2) assigns tmax value 2 to tuple A. 
Executing (3) assigns tmax value 3 to tuple B, creates tuple 

B’ and assigns tmin value 3. 

B. MVCC 

As example above, tmin and tmax are tid values that are 
given when creating and deleting tuples. Tmax value serves 
as delete mark. PostgreSQL handles MVCC using these 
values. When a transaction scans heap data, only the tuple 
with visibility is accessible. Visibility is obtained when the 
tid of the transaction is greater than tmin and less than tmax. 
That is, tmin is the minimum tid value to get visibility, and 
tmax is the maximum tid value for it. PostgreSQL keeps 
commit log separately and stores the status of transactions. 
The tuple of aborted transactions cannot have visibility 
because it is marked abort in commit log. 

C. WAL Logging System 

PostgreSQL's initial design architecture suggests a very 
simple logging system, but currently does not use it because 
of durability issues. The process of WAL logging in 
PostgreSQL is shown in Fig. 2. When a client requests data 
manipulate language (DML) query the server creates WAL 
log for each operation. PostgreSQL logs every operation that 
modifies page data.  
 

 
Since the created log cannot be recovered if system crash 

occurs while the server is processing the request. It tries to 
save the log for every log creation. Log file is switched by 
backend of server when the timeout set by the DBMS occurs 
or certain number of transactions is performed or when there 
is no more log capacity on log buffer. Logging is performed 
by XLogWrite function, which opens a file and saves created 

log and calls fsync. WAL logs are stored in the order of the 
LSN, and the LSN value indicates the location of the actual 
file. 

When the WAL log is created by the SQL statement, the 
log contents are stored in the user memory buffer as program 
internal variable. When the WAL log is saved to a file, it is 
written to the OS kernel buffer and stored in the durable 
memory when fsync is called. The write and fsync functions 
used to access the shared data are synchronous and require 
an exclusive lock. Because the data processing speed of the 
storage device is considerably slower than the CPU, all 
transactions that do not have locks must wait, and the entire 
database system experience bottleneck due to this latency.  

The proportion of WAL logs generated by TPCC is in the 
order of update(28%), btree insert(26%), tuple level 
lock(17%), insert(14%), heap clean(12%), delete(1%), 
others(1%). 

D. Recovery 

PostgreSQL creates one WAL log for each tuple change, 
and manages it in the order of the LSN. If a system crash 
occurs during transaction processing, the committed data and 
stored data pages are not the same. For durability, DBMS 
uses redo log to recover data. The data before checkpoint is 
stored in the storage, but the contents of the buffer pool are 
not recovered yet. Recovery process reads WAL log starting 
from checkpoint. If LSN value of the WAL log is larger than 
LSN value of the page, it means that the newly applied data 
are not reflected. Accordingly, the page is updated through 
the redo function.  

As described in PostgreSQL's MVCC, all data changes 
are made in an increasing direction, so if only redo process is 
repeated, not only the insert, but also the delete and update 
operations will be automatically reflected. Since there is no 
need for rollback, PostgreSQL can complete the recovery 
with only redo logic similar to the DML operation. The 
WAL log has pages, data offsets, operation information, and 
applied tuple values. The DBMS data after reflecting WAL 
log is guaranteed to contain all the committed data of the 
moment of crash. 

As a result, if a system crash occurs, all that PostgreSQL 
has done is applying logs sequentially. This nature simplifies 
the merge operation of IPL approach for PostgreSQL. 

III. IPLIZATION OF POSTGRESQL ON NVDIMM 

A.  In Page Logging Approach 

In-Page Logging is a novel design for flash-based DBMS. 
It can overcome limitations of SSD and exploit its 
advantages. IPL manages per page log in erase unit of flash 
memory and shows difference from existing system in 3 
situations. The first is when writing to disk. At that time, IPL 
does not write data page but only records log data. Then the 
old page will remain on disk. Second is when reading from 
disk. It combines old version of the page with the log and 
perform instant recovery to generate updated page, which is 
merge operation. Since merge is fast enough, the host will 
only see new page from disk. Last, when log sector is full. 

Figure 2. PostgreSQL WAL Log System Architecture 



When the allocated log area is full, logs and old pages are 
merged to updated version and written to disk.  

This allows the DBMS to replace page writes to log 
writes, which is smaller, by merging once every time the log 
area is full. Instead of avoiding one write operation, one log 
read and one instant recovery are included. However, SSDs 
are much slower in writes than read, even if a merge process 
is added, this obviously causes performance gain. In addition, 
because the write amount to disk is reduced, lifespan SSD is 
expected to increase.  

Unfortunately, flash-based IPL has never been 
implemented in real DBMS. The reason is that the current 
SSD only supports page wise writing, and cannot effectively 
write few bytes to the IPL log area. There have been attempts 
to apply it using byte-addressable NVRAM such as PCRAM, 
but the price of such device is too expensive to be 
commercialized. On the other hand, NVDIMM is as fast as 
DRAM, persistent and cheap. Applying IPL to DBMS by 
adopting NVDIMM as IPL log area will improve SSD 
storage performance and lifetime.  

B. IPLized PostgreSQL  

The IPL log area was allocated on NVDIMM and 
managed in page wise manner. PostgreSQL manages the log 
by LSN. Since IPL approach needs to manage logs in page 
units, we added a procedure to capture WALs log and 
organize it per page units. We implemented the three 
situations described above. First, when writing to disk, we 
blocked write operation occurred in buffer pool or caused by 
the background flusher. Second when reading from disk, the 
old page merges with corresponding IPL logs and passes 
updated version to the host. The merge process is 
implemented by benchmarking recovery logic of 
PostgreSQL. Lastly, when log sector is full, it does not 
prevent writing. It works same as the existing process, and 
cleans the log area. Except for new implementation of merge 
logic for IPL, there are only tens of lines changed in existing 
code.  

Since operations such as btree split covers several pages 
and require too much time for merge operation, we have 
defined target pages, operations suitable for IPL. Heap file 
and index file are IPLized and IPL is applied to six 
operations: insert, delete, update, tuple level lock, heap clean, 
and btree insert. The heap clean operation here refers to the 
page wise vacuum that PostgreSQL performs for every page 
read. When the IPL is not performed, the page is operated 
just like the existing DBMS. 

Some operations on the DBMS occasionally generate a 
single WAL log but take place across multiple pages. 
Suppose tuple A was updated which is one delete and one 
insert in PostgreSQL. Old version remains on page 100 and 
new version was created on page 110. If so, page 100 will 
have a delete IPL Log, and 110 will have an insert IPL Log. 
When each page is requested by DBMS, the merge process is 
performed without regard to each other. Page 100 and Page 
110 are independent from the viewpoint of IPL merge 
operation, although both have been changed by one 
operation. It is possible because updated version and merged 
version are idempotent pages. 

    Fig. 3 illustrates how existing DBMS and IPL 
approach work in PostgreSQL. The time is specified for file 
I/O. The solid line indicates the IPL approach and dotted line 
indicates the existing DBMS. As it can be seen, IPL replaces 
one write with one read and merge, which is much faster. 

 

IV. PERFORMANCE EVALUATION 

TABLE1. EXPERIMENTAL ENVIRONMENT DETAILS 

OS Linux (Kernel 3.13.0-74) 

CPU  
Intel®  Core™ i5-2500k CPU @ 

3.30GHz (4 CPUs) 

DRAM 6 GB 

STORAGE Samsung 840 PRO SSD 256GB 

NVDIMM Emulated NVDIMM 2GB 

DBMS PostgreSQL 9.4.5 

BENCHMARK BenchmarkSQL 5.0 

 
In performance evaluation, we used PostgreSQL 9.4.5 for 

DBMS, and BenchmarkSQL 5.0 for the benchmark tool. 
Experimental environment details are in Table.1. In TPC-C 
benchmarking setup, the value of warehouse is 100 (about 11 
GB), and user is 32, run time is 20 minutes. NVDIMM was 
emulated using Linux PMEM interface at DRAM. 

Figure 3.  Comparison of Existing DBMS and IPL Approach 



 

 
Fig.4 shows the transactional performance differences 

between original and IPLized PostgreSQL in each file I/O 
configuration. In normal file system, IPLized DBMS 
performance has dropped by 1.2%, in direct I/O environment 
increased by 5.9%, and in osync environment increased by 
44.8%. For a normal file system, PostgreSQL only supports 
buffered I/O mode, which does IO operations against buffer 
cache. Therefore, the effort to reduce the amount of write 
toward storage was not effective.  

Also, the process of storing IPL log and merge process 
speed became similar to read/write speed, which generate 
minor overhead. The IPL approach shows better 
performance at situation where large write toward storage 
occurs. To demonstrate the maximum performance 
improvement of IPL approach, following experiments were 
conducted using the sync option. 

TABLE II. TPM, READ, WRITE ANALYSIS AT EACH LOG SIZE. 

LogSize 0 256 512 1024 2048

tpmtotal 8267.02 9935.67 12530.38 13402.00 14372.38

WR/10000TX 29412.75 8478.18 6550.08 5630.43 4863.33

RD/10000TX 8409.13 28847.31 28166.48 31259.59 32824.70  
 
 

 

Table.2 and Fig.5 show tmp, write/read amount toward 
storage according to log size. As the log size increases, the 
amount of write is greatly reduced and read is increased. It is 
the characteristic of IPL approach that write is replaced by 
read and merge operation. As a result, the transaction 
throughput has improved by up to 74%. The amount of write 
has been reduced by up to 17%, which would help expanding 
life of the SSD. 

IPLized PostgreSQL showed better performance at write 
mount and transaction throughput. The amount of read has 
increased, but by the characteristics of asymmetric read/write 
speed on SSD, it did not cause performance degradation. 

V. RELATED WORKS 

Reducing write amount of SSD based DBMS is not only 
good in terms of performance, but also extends lifespan of 
the storage device. Since the size of the log is smaller than 
the size of the page itself in most cases, storing log instead of 
page in persistent storage device can reduce write amount. 
As computing devices such as CPU and DRAM are getting 
better, performing instant recovery using old version page 
and log merely affect performance. The research that 
employs log-write and instant recovery is adopted by [2] 
which provides the core idea of the paper. IPL is a novel 
design of flash-based DBMS as described above and [4] is a 
transactional DBMS design that provides MVCC and 
recovery solution using IPL approach. The merge process 
used in page read can replace the recovery process, thus 
enabling immediate recovery. 

[1] uses a portion of the SSD as a byte-addressable delta-
record area using the characteristics of the flash cell and 
presents a new page-format. Here, instead of using the 
updated version of the page, old version and delta-record are 
combined to create updated version. [5] scopes update 
propagation strategies and give variation to page-based 
propagation. They present log-based propagation technique 
using partially ordered log and old page for effective 
management of log accumulation. 

After the emergence of fast and byte addressable 
NVDIMMs, researches are underway to reduce write amount 
toward SSDs. [3] is a study applying per-page logging 
method to SQLite by adopting PCRAM. They effectively 
solved the write amplification problem, which is 
characteristic of SQLite, and reduces write amount. [6] is a 
study that replaced the log area of commercial open source 
DBMS with NVDIMM. [7] replaces the WAL log area with 
NVRAM, and suggests an optimized WAL logging system. 

VI. CONCLUSION 

On this paper, IPL was successfully implemented on 
commercial open source DBMS adopting NVDIMM. The 
IPL log area was allocated on NVDIMM and managed in 
page wise manner. We implemented the three situations. 
First, when writing to disk, we blocked write operation 
occurred in buffer pool or caused by the background flusher. 
Second when reading from disk, the old page merges with 
corresponding IPL logs and passes updated version to the 
host. Lastly, when log sector is full it works same as the 
existing process, and cleans the log area.  

Figure 4. Tpm Analysis For Each File I/O configuration. 

Figure 5. Tpm, Read, Write Analysis At Each Log Size. 



We also have defined target pages, operations suitable for 
IPL. The IPL approach replaces one write with one read and 
merge, which is much faster. The experiment showed 
improvement of reducing write amount in proportion to 
occurrence of write operation on DBMS. The bigger the log 
size, the smaller the amount of writes. As a result is led to 
performance gain and SSD lifetime increase. 

For the future research, we planned to optimize usage of 
IPL log space on NVDIMM. Appropriate replacement policy 
and new features to IPL Log management module will be 
added. Upgrading IPLized Postgres to transactional IPLized 
Postgres is also on wish list. 
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