
IPLization of PostgreSQL on NVDIMM

Joobo Shim, Sang-Won Lee

School of Information & Communications Engr.

Sungkyunkwan University

Suwon 440-746, Korea

joobo95@skku.edu, swlee@skku.edu

Abstract—A novel approach to DBMS design called In-Page

Logging (IPL) was proposed a decade ago. The IPL system

exploits characteristic of flash memory; asymmetric write/read

speed. This approach manages per page log in erase unit of

flash memory and avoids page write but saves redo log. When

the page is required merge operation, which is instant recovery

process, generates updated version of page using old page and

its redo log. In fact this never has been implemented to real

DBMS system since lack of fast, persistent, byte-addressable,

and affordable device. Since NVDIMM matches with concept

of IPL, we implemented IPL to PostgreSQL, a commercial

open source DBMS, employing it as IPL log device. The

experiment showed improvement of reducing write amount,

which leads to performance gain and SSD lifetime increase.

Keywords: In-page logging, PostgreSQL, NVDIMM

I. INTRODUCTION

SSDs are attracting attention because they are smaller in
size, lighter in weight, stronger against shock, lower
electricity consumption, less noise, and faster read/write
performance than conventional HDDs. Currently, many
SSDs are used in personal computers as well as data servers.
With the development of technology, prices are dropping
gradually, performance and capacity are getting better, and it
is expected to be the most widely used storage replacing
HDD. SSDs have several unique features. The NAND flash
cell can only be used for a predetermined erase-program
cycle, and has a minimum writing unit that is increased from
SLC, MLC to TLC. These characteristics occur
disadvantages in aspect of wearing and performance in
environments where small random writes occur frequently,
such as OLTP. Write amplification phenomenon, which
changes write of few bytes to the write of several pages, also
occurs, worsening the problem [1].

SSD also has asymmetric read/write speeds, which read
is significantly faster than write. A decade ago, a novel
approach to DBMS design called IPL was proposed [2]. The
IPL system overcomes the difficulties of exploiting benefits
of flash memory. Write/erase operations caused by small
random writes have high latency. In order to avoid this, only
per-page logs are stored in the storage, not the whole page,
and eventually merged to database. When this method was
introduced, it was promising but never applied to real DBMS
due to the lack of memory device which is fast, persistent
and affordable for byte-addressable small delta writing.
Therefore, there have been attempts to apply it to byte-
addressable NVRAM such as PCRAM [3].

Adopting NVDIMM makes it possible to apply the new
logging system previously. NVDIMMs have speed of
DRAM, are persistent, and are cheaper than other NVRAMs.
In fact, NVDIMM interface is supported by Linux, MS
Windows, and hardware servers like HP ProLiant. It is the
most realistic NVRAM solution and the most suitable
storage for IPL concept.

The composition of this paper is as follows. Chapter 2
explains PostgreSQL tuple management system to help
understanding following section. Section 3 introduces how
IPLization of PostgreSQL was done as well as IPL approach.
Section 4 analyzes the performance evaluation environment
and results of the comparing original and modified system.
Section 5 briefly present related works. We conclude the
paper presenting future research.

II. POSTGRESQL TUPLE MANAGEMENT

A. PostgreSQL Page And Tuple Structure

PostgreSQL manages user-created data in the form of
heap data. Page contains item pointer and actual tuple, and
tuple is accessible through item pointer. Each tuple
represents a row of relations. Tuple has value called tmax
and tmin which are given at creation and deletion. When
performing an insert, a new tuple is created on a empty space
in page. When a delete is performed, only the delete mark is
set, and the tuple data is not deleted. Update operation is
equivalent to performing delete and insert once each. To take
care of continuously growing size of heap data, PostgreSQL
frees the space of deleted tuples through vacuum operation.
Fig .1 is the result of performing three DML queries to an
empty page. TID states for transaction ID.

Figure 1. Result of executing 3 transactions.

(1) TID1 : Insert A, B
(2) TID2 : Delete A

(3) TID3 : Update B to B’

Executing (1) creates tuple A and B and assigns tmin

value 1. Executing (2) assigns tmax value 2 to tuple A.
Executing (3) assigns tmax value 3 to tuple B, creates tuple

B’ and assigns tmin value 3.

B. MVCC

As example above, tmin and tmax are tid values that are
given when creating and deleting tuples. Tmax value serves
as delete mark. PostgreSQL handles MVCC using these
values. When a transaction scans heap data, only the tuple
with visibility is accessible. Visibility is obtained when the
tid of the transaction is greater than tmin and less than tmax.
That is, tmin is the minimum tid value to get visibility, and
tmax is the maximum tid value for it. PostgreSQL keeps
commit log separately and stores the status of transactions.
The tuple of aborted transactions cannot have visibility
because it is marked abort in commit log.

C. WAL Logging System

PostgreSQL's initial design architecture suggests a very
simple logging system, but currently does not use it because
of durability issues. The process of WAL logging in
PostgreSQL is shown in Fig. 2. When a client requests data
manipulate language (DML) query the server creates WAL
log for each operation. PostgreSQL logs every operation that
modifies page data.

Since the created log cannot be recovered if system crash

occurs while the server is processing the request. It tries to
save the log for every log creation. Log file is switched by
backend of server when the timeout set by the DBMS occurs
or certain number of transactions is performed or when there
is no more log capacity on log buffer. Logging is performed
by XLogWrite function, which opens a file and saves created

log and calls fsync. WAL logs are stored in the order of the
LSN, and the LSN value indicates the location of the actual
file.

When the WAL log is created by the SQL statement, the
log contents are stored in the user memory buffer as program
internal variable. When the WAL log is saved to a file, it is
written to the OS kernel buffer and stored in the durable
memory when fsync is called. The write and fsync functions
used to access the shared data are synchronous and require
an exclusive lock. Because the data processing speed of the
storage device is considerably slower than the CPU, all
transactions that do not have locks must wait, and the entire
database system experience bottleneck due to this latency.

The proportion of WAL logs generated by TPCC is in the
order of update(28%), btree insert(26%), tuple level
lock(17%), insert(14%), heap clean(12%), delete(1%),
others(1%).

D. Recovery

PostgreSQL creates one WAL log for each tuple change,
and manages it in the order of the LSN. If a system crash
occurs during transaction processing, the committed data and
stored data pages are not the same. For durability, DBMS
uses redo log to recover data. The data before checkpoint is
stored in the storage, but the contents of the buffer pool are
not recovered yet. Recovery process reads WAL log starting
from checkpoint. If LSN value of the WAL log is larger than
LSN value of the page, it means that the newly applied data
are not reflected. Accordingly, the page is updated through
the redo function.

As described in PostgreSQL's MVCC, all data changes
are made in an increasing direction, so if only redo process is
repeated, not only the insert, but also the delete and update
operations will be automatically reflected. Since there is no
need for rollback, PostgreSQL can complete the recovery
with only redo logic similar to the DML operation. The
WAL log has pages, data offsets, operation information, and
applied tuple values. The DBMS data after reflecting WAL
log is guaranteed to contain all the committed data of the
moment of crash.

As a result, if a system crash occurs, all that PostgreSQL
has done is applying logs sequentially. This nature simplifies
the merge operation of IPL approach for PostgreSQL.

III. IPLIZATION OF POSTGRESQL ON NVDIMM

A. In Page Logging Approach

In-Page Logging is a novel design for flash-based DBMS.
It can overcome limitations of SSD and exploit its
advantages. IPL manages per page log in erase unit of flash
memory and shows difference from existing system in 3
situations. The first is when writing to disk. At that time, IPL
does not write data page but only records log data. Then the
old page will remain on disk. Second is when reading from
disk. It combines old version of the page with the log and
perform instant recovery to generate updated page, which is
merge operation. Since merge is fast enough, the host will
only see new page from disk. Last, when log sector is full.

Figure 2. PostgreSQL WAL Log System Architecture

When the allocated log area is full, logs and old pages are
merged to updated version and written to disk.

This allows the DBMS to replace page writes to log
writes, which is smaller, by merging once every time the log
area is full. Instead of avoiding one write operation, one log
read and one instant recovery are included. However, SSDs
are much slower in writes than read, even if a merge process
is added, this obviously causes performance gain. In addition,
because the write amount to disk is reduced, lifespan SSD is
expected to increase.

Unfortunately, flash-based IPL has never been
implemented in real DBMS. The reason is that the current
SSD only supports page wise writing, and cannot effectively
write few bytes to the IPL log area. There have been attempts
to apply it using byte-addressable NVRAM such as PCRAM,
but the price of such device is too expensive to be
commercialized. On the other hand, NVDIMM is as fast as
DRAM, persistent and cheap. Applying IPL to DBMS by
adopting NVDIMM as IPL log area will improve SSD
storage performance and lifetime.

B. IPLized PostgreSQL

The IPL log area was allocated on NVDIMM and
managed in page wise manner. PostgreSQL manages the log
by LSN. Since IPL approach needs to manage logs in page
units, we added a procedure to capture WALs log and
organize it per page units. We implemented the three
situations described above. First, when writing to disk, we
blocked write operation occurred in buffer pool or caused by
the background flusher. Second when reading from disk, the
old page merges with corresponding IPL logs and passes
updated version to the host. The merge process is
implemented by benchmarking recovery logic of
PostgreSQL. Lastly, when log sector is full, it does not
prevent writing. It works same as the existing process, and
cleans the log area. Except for new implementation of merge
logic for IPL, there are only tens of lines changed in existing
code.

Since operations such as btree split covers several pages
and require too much time for merge operation, we have
defined target pages, operations suitable for IPL. Heap file
and index file are IPLized and IPL is applied to six
operations: insert, delete, update, tuple level lock, heap clean,
and btree insert. The heap clean operation here refers to the
page wise vacuum that PostgreSQL performs for every page
read. When the IPL is not performed, the page is operated
just like the existing DBMS.

Some operations on the DBMS occasionally generate a
single WAL log but take place across multiple pages.
Suppose tuple A was updated which is one delete and one
insert in PostgreSQL. Old version remains on page 100 and
new version was created on page 110. If so, page 100 will
have a delete IPL Log, and 110 will have an insert IPL Log.
When each page is requested by DBMS, the merge process is
performed without regard to each other. Page 100 and Page
110 are independent from the viewpoint of IPL merge
operation, although both have been changed by one
operation. It is possible because updated version and merged
version are idempotent pages.

 Fig. 3 illustrates how existing DBMS and IPL
approach work in PostgreSQL. The time is specified for file
I/O. The solid line indicates the IPL approach and dotted line
indicates the existing DBMS. As it can be seen, IPL replaces
one write with one read and merge, which is much faster.

IV. PERFORMANCE EVALUATION

TABLE1. EXPERIMENTAL ENVIRONMENT DETAILS

OS Linux (Kernel 3.13.0-74)

CPU
Intel® Core™ i5-2500k CPU @

3.30GHz (4 CPUs)

DRAM 6 GB

STORAGE Samsung 840 PRO SSD 256GB

NVDIMM Emulated NVDIMM 2GB

DBMS PostgreSQL 9.4.5

BENCHMARK BenchmarkSQL 5.0

In performance evaluation, we used PostgreSQL 9.4.5 for

DBMS, and BenchmarkSQL 5.0 for the benchmark tool.
Experimental environment details are in Table.1. In TPC-C
benchmarking setup, the value of warehouse is 100 (about 11
GB), and user is 32, run time is 20 minutes. NVDIMM was
emulated using Linux PMEM interface at DRAM.

Figure 3. Comparison of Existing DBMS and IPL Approach

Fig.4 shows the transactional performance differences

between original and IPLized PostgreSQL in each file I/O
configuration. In normal file system, IPLized DBMS
performance has dropped by 1.2%, in direct I/O environment
increased by 5.9%, and in osync environment increased by
44.8%. For a normal file system, PostgreSQL only supports
buffered I/O mode, which does IO operations against buffer
cache. Therefore, the effort to reduce the amount of write
toward storage was not effective.

Also, the process of storing IPL log and merge process
speed became similar to read/write speed, which generate
minor overhead. The IPL approach shows better
performance at situation where large write toward storage
occurs. To demonstrate the maximum performance
improvement of IPL approach, following experiments were
conducted using the sync option.

TABLE II. TPM, READ, WRITE ANALYSIS AT EACH LOG SIZE.

LogSize 0 256 512 1024 2048

tpmtotal 8267.02 9935.67 12530.38 13402.00 14372.38

WR/10000TX 29412.75 8478.18 6550.08 5630.43 4863.33

RD/10000TX 8409.13 28847.31 28166.48 31259.59 32824.70

Table.2 and Fig.5 show tmp, write/read amount toward
storage according to log size. As the log size increases, the
amount of write is greatly reduced and read is increased. It is
the characteristic of IPL approach that write is replaced by
read and merge operation. As a result, the transaction
throughput has improved by up to 74%. The amount of write
has been reduced by up to 17%, which would help expanding
life of the SSD.

IPLized PostgreSQL showed better performance at write
mount and transaction throughput. The amount of read has
increased, but by the characteristics of asymmetric read/write
speed on SSD, it did not cause performance degradation.

V. RELATED WORKS

Reducing write amount of SSD based DBMS is not only
good in terms of performance, but also extends lifespan of
the storage device. Since the size of the log is smaller than
the size of the page itself in most cases, storing log instead of
page in persistent storage device can reduce write amount.
As computing devices such as CPU and DRAM are getting
better, performing instant recovery using old version page
and log merely affect performance. The research that
employs log-write and instant recovery is adopted by [2]
which provides the core idea of the paper. IPL is a novel
design of flash-based DBMS as described above and [4] is a
transactional DBMS design that provides MVCC and
recovery solution using IPL approach. The merge process
used in page read can replace the recovery process, thus
enabling immediate recovery.

[1] uses a portion of the SSD as a byte-addressable delta-
record area using the characteristics of the flash cell and
presents a new page-format. Here, instead of using the
updated version of the page, old version and delta-record are
combined to create updated version. [5] scopes update
propagation strategies and give variation to page-based
propagation. They present log-based propagation technique
using partially ordered log and old page for effective
management of log accumulation.

After the emergence of fast and byte addressable
NVDIMMs, researches are underway to reduce write amount
toward SSDs. [3] is a study applying per-page logging
method to SQLite by adopting PCRAM. They effectively
solved the write amplification problem, which is
characteristic of SQLite, and reduces write amount. [6] is a
study that replaced the log area of commercial open source
DBMS with NVDIMM. [7] replaces the WAL log area with
NVRAM, and suggests an optimized WAL logging system.

VI. CONCLUSION

On this paper, IPL was successfully implemented on
commercial open source DBMS adopting NVDIMM. The
IPL log area was allocated on NVDIMM and managed in
page wise manner. We implemented the three situations.
First, when writing to disk, we blocked write operation
occurred in buffer pool or caused by the background flusher.
Second when reading from disk, the old page merges with
corresponding IPL logs and passes updated version to the
host. Lastly, when log sector is full it works same as the
existing process, and cleans the log area.

Figure 4. Tpm Analysis For Each File I/O configuration.

Figure 5. Tpm, Read, Write Analysis At Each Log Size.

We also have defined target pages, operations suitable for
IPL. The IPL approach replaces one write with one read and
merge, which is much faster. The experiment showed
improvement of reducing write amount in proportion to
occurrence of write operation on DBMS. The bigger the log
size, the smaller the amount of writes. As a result is led to
performance gain and SSD lifetime increase.

For the future research, we planned to optimize usage of
IPL log space on NVDIMM. Appropriate replacement policy
and new features to IPL Log management module will be
added. Upgrading IPLized Postgres to transactional IPLized
Postgres is also on wish list.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of
Science and ICT), Korea, under the “SW Starlab” (IITP-
2015-0-00314) supervised by the IITP(Institute for
Information & communications Technology Promotion)

This research was supported by Basic Science Research

Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education(NRF-
2017R1D1A1B03028426)

REFERENCES

[1] H, Sergey, I. Petrov, R, Gosttstein, A. Buchmann. From in-place
updates to in-place appends: Revisiting out-of-place updates on flash.
In: Proceedings of the 2017 ACM International Conference on
Management of Data. ACM, 2017. p. 1571-1586.

[2] S.W.Lee, B.Moon, Design of flash-based DBMS: an in-page
logging approach, Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. ACM, 2007.

[3] G. OH, S.Kim, S.W.Lee, B.Moon, Sqlite optimization with
phase change memory for mobile applications. Proceedings of the
VLDB Endowment, 2015, 8.12: 1454-1465.

[4] S.W.Lee, B.Moon, Transactional In-Page Logging for
multiversion read consistency and recovery. In: Data Engineering
(ICDE), 2011 IEEE 27th International Conference on. IEEE, 2011. p.
876-887.

[5] S. Caetano, L. Lersch, G. Graefe, Update Propagation Strategies
for High-Performance OLTP. In: East European Conference on
Advances in Databases and Information Systems. Springer
International Publishing, 2016. p. 152-165.

[6] J.Shim, S.W.Lee, Performance evaluation of PostgreSQL WAL
log based on NVDIMM, Proceedings of the Korea Computer
Congress, 2016, p.1923~1925

[7] W.H.Kim, J.Kim, W.Baek, B.Nam, Y.Won, NVWAL:
exploiting nvram in write-ahead logging. In: ACM SIGPLAN Notices.
ACM, 2016. p. 385-398.

