
Performance Improvement Plan

for MySQL Insert Buffer

Hwanggyo Lee
Dept of Computer Engineering

Sungkyunkwan University
Suwon, Korea

gt369kr@skku.edu

Sang-Won Lee
Dept of Computer Engineering

Sungkyunkwan University
Suwon, Korea

swlee@skku.edu

ABSTRACT

Using non-clustered secondary index in MySQL database

can cause additional and random disk accesses, degrades

the performance of storage device. MySQL’s storage

engine eases that with Insert Buffer, which is used to avoid

additional disk accesses. We verified the improvement

effect of using Insert buffer in MySQL by Sysbench

benchmark. Furthermore, we suggest an idea for improving

Insert buffer’s performance, and show simple

implementation and its experimental result.

CCS Concepts
Information system → Data management systems;

Database management system engines

Keywords

MySQL; Insert Buffer; Solid-State Drive; Ramdisk

1. INTRODUCTION
In InnoDB, the storage engine of MySQL, a table has one

primary index, and zero or more non-clustered secondary

indexes. Every index has the B+ tree structure. When a

record is inserted in a table, information of the record is

inserted in primary index first, in secondary index later. In

this process, additional disk accesses, sometimes random

also, are occurred because of non-clustered secondary index.

We can find similar disk access patterns also in case of

updates and deletes. These additional disk accesses cause

the inefficient device usage. In InnoDB, the Insert buffer is

used to resolve the performance degradation.

2. Insert Buffer
When some entries are inserted into, updated, or deleted

from an index, at first, InnoDB checks the requested index

root pages is placed in buffer pool. In case of the clustered

primary index, the root page is almost always placed in

buffer pool, so it does not need any additional disk accesses

except to searching internal and leaf pages of the index. In

case of the secondary index, however, presence in buffer

pool of the root page is not guaranteed, so it may cause

more disk accesses. If a table has multiple secondary

indexes, the number of additional disk accesses may

increase. To resolve these disk accesses, InnoDB uses

Insert buffer. Insert buffer is also a system-wide and index-

like structure, so it is operated similar to other indexes. The

root page is fixed in buffer pool after started-up, so there

are no disk accesses for searching Insert buffer’s root while

InnoDB is running. Insert buffer saves index entries which

have to be originally stored in currently not-in-memory

secondary index pages, to avoid additional disk accesses [1].

Table 1. Benchmark in SSD and hard disk

Device SSD hard disk

Insert Buffer On None On None

Transactions

per sec.
946.17 792.81 19.22 13.71

R/W requests

per sec.
17,031.05 14,270.55 345.98 246.77

We did an experiment to measure the performance

improvement effect of using Insert buffer. We planned the

experiment for both Solid State Drive (SSD) and hard disk,

turn on/off Insert buffer for each device. We used Sysbench,

one of the benchmark tool for MySQL. The experiment was

performed on 3.4GHz Quad-core processor, 8GB DRAM

machine, operating system was Ubunt 14.04.1. We used

256GB commercial SSD, which has about 500~550MB/s

bandwidth for sequential access and 90K~100K IOPS for

4K random access, and 7200rpm 1TB hard disk. The Ext4

file system is installed in both devices, without write barrier.

The experimental database was the size of 100GB, the size

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Request permissions

from Permissions@acm.org.

EDB, October 17-19, 2016, Jeju Island, Republic of Korea

© 2016 ACM. ISBN 978-1-4503-4754-9/16/10…$15.00

DOI: http://dx.doi.org/10.1145/3007818.3007833

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/3007818.3007833

of buffer pool was 1GB, and we ran 50 threads for 3600

seconds. The table 1 is the result of this benchmark.

By the result, the performance of using Insert buffer is 19%

better than none case in SSD, 40% better in hard disk.

As we mentioned before, Insert buffer is also a kind of

indexes, so its pages are stored in the certain area of disk,

named system tablespace. The system tablespace is a

tablespace to store and manage data structures about whole

InnoDB engine. Insert buffer pages occupy some parts of

system tablespace pages. Insert buffer’s root page resides in

memory, but others can be loaded in or evicted from the

buffer pool by InnoDB’s operation and policy. In addition,

Insert buffer has the limited maximum size (by default, 25%

of the buffer pool size. In our cases, 256MB), so its

contents must be migrated to original indexes sometime

during running. Those above mean, Insert buffer makes

some amount of disk accesses for operating and managing

itself.

To investigate the amount of disk accesses caused by Insert

buffer, we run Linux’s Blktrace simultaneously to trace disk

access patterns, during running Sysbench benchmark

mentioned above. The following table is the analysis result

of disk access patterns.

Table 2. Blktrace Result Analysis

Device SSD hard disk

Insert Buffer On None On None

INDEX

Read 52,860,783 45,496,691 1,117,109 700,321

Write 15,481,472 19,396,386 526,961 249,256

IBUF

_INDEX

Read 3,160,746 0 922 0

Write 3,408,553 0 11,083 0

We could search and classify pages through their page

number traced by Blktrace. Table 2 contains only about

INDEX and IBUF_INDEX pages, which hold absolute

majority and the most important in this result. INDEX

means pages for table indexes, and IBUF_INDEX means

pages for Insert buffer.

In both cases of SSD and hard disk, the number of reading

INDEX pages is much bigger than writing. However, in

IBUF_INDEX pages, the number of writing is bigger than

reading. Especially, in SSD, 18% of writings are issued to

IBUF_INDEX pages.

The result shows that the case of using Insert buffer leads

better performance even though it has bigger number of

I/Os than ‘none’ case (using - 74,911,554 in SSD,

1,656,075 in hard disk, none - 64,893,077 in SSD, 949,577

in hard disk).

The reason of above difference is the burden of random

disk accesses. Different from the primary index, the

secondary index is neither clustered nor unique. Thus, the

insertion of secondary index entries is not guaranteed to

have same sequence as the clustered primary index entries.

It means that when the entries is directly added to

secondary indexes without Insert buffer, those may cause

random disk accesses. It is well-known that the random disk

access (write for SSD, read and write for hard disk) has

much lower performance than the sequential [3][4]. InnoDB

solves this problem using Insert buffer, also can gain

performance improvement [5]. We did experiments about

different cases for equally an hour, so higher performance

means more tasks is done during same experimental time.

Therefore, the number of disk I/Os increased naturally

when Insert buffer is turned on.

3. Improvement Idea for Insert Buffer

3.1 Insert Buffer on Ramdisk
Through the prior experiment, we found that the number of

I/Os grows when the Insert buffer is used. The Insert buffer

shows good performance with that bigger I/Os, but if the

number of I/Os caused by Insert buffer can be reduced, we

can get better performance gain. It is our main idea storing

the Insert buffer in memory, much faster device than SSD

or hard disk, not in system tablespace in disk. We

implemented it with Ramdisk, one of the simplest way.

Figure 1. Insert Buffer on Ramdisk

We can consider some part of memory as if a disk partition

using Ramdisk, so we can implement simply without any

modifications for InnoDB's disk access routines. Evicted

Insert buffer pages from buffer pool is stored in the Insert

buffer area in Ramdisk, not in system tablespace anymore.

We did same benchmark tests and disk access pattern traces

for Insert buffer on Ramdisk. The maximum size of

Ramdisk was 2GB, and the other environmental setting

were same as the previous experiments.

3.2 Experimental Results

3.2.1 SSD
In SSD, the transaction processing performance of Insert

buffer on Ramdisk case is improved about 13% compared

with Insert buffer on system tablespace, 35% compared

with none case. We cannot see disk accesses for

IBUF_INDEX pages in Blktrace result. It means that Insert

buffer pages do not stored in system tablespace as we

intended. The total number of I/Os in the Ramdisk case is

66,456,266. Comparing with the system tablespace case,

the number of I/Os is reduced because I/Os caused by Insert

buffer are removed, so the performance can be grown. Next,

comparing with none case, the number of I/Os is similar,

actually a little bigger in the Ramdisk case, but it shows

much better performance. Through this, we can see again

that the random disk accesses is much more critical for the

performance degradation than the total number of I/Os.

Table 3. Insert Buffer on Ramdisk for SSD

Insert Buffer None On SSD On Ramdisk

Transactions

per sec.
792.81 946.17 1071.19

R/W requests

per sec.
14,270.55 17,031.05 19,281.51

INDEX
Read 45,496,691 52,860,783 52,295,720

Write 19,396,386 15,481,472 14,160,546

IBUF

_INDEX

Read 0 3160746 0

Write 0 3408553 0

3.2.2 Hard Disk
Table 4. Insert Buffer on Ramdisk for Hard Disk

Insert Buffer None On disk On Ramdisk

Transactions

per sec.
13.71 19.22 19.21

R/W requests

per sec.
246.77 345.98 345.81

INDEX
Read 700,321 1,117,109 1,121,181

Write 249,256 526,961 538,546

IBUF

_INDEX

Read 0 922 0

Write 0 11,083 0

Otherwise in hard disk, we cannot find any remarkable

changes in both performance and the number of disk

accesses. The original performance of hard disk is much

worse than SSD, so hard disk cannot exploit the efficiency

of Insert buffer fully under the identical experimental

condition. It is shown by the number of I/Os in system

tablespace case; the I/Os for Insert buffer page occupies

tiny proportion of total I/Os. Therefore, in our experimental

case, Insert buffer on Ramdisk solution is not necessary for

hard disk.

4. Conclusion and Future Works
MySQL InnoDB uses Insert buffer to resolve the

performance degradation caused by non-clustered and non-

unique secondary indexes. Through some experiments, we

found that using Insert buffer is helpful for device

performance, and we can get better performance gain with

some modifications. In this paper, we suggested in-memory

Insert buffer as the idea, and evaluated the improvement

factor with simple implementation using Ramdisk. However,

we did experiments using normal volatile DRAM, the

durability of in-memory Insert buffer is not guaranteed.

Thus, our future works will be that we also can or cannot

get same, or better performance gain with non-volatile

memory devices.

5. Acknowledgement
This work was supported by Institute for Information &

communications Technology Promotion (IITP) grant

funded by the Korea government (MSIP). (R0126-16-1108,

NVRam Based High Performance Open Source DBMS

development)

REFERENCES
[1] The InnoDB Change Buffer,

http://mysqlserverteam.com/the-innodb-change-buffer/

[2] Baron Schwartz, Peter Zaitsev, Vadim Tkachenko,

Jeremy D. Zawodny, Arjen Lentz, Derek J. Balling,

“High Performance MySQL”, 2nd Ed. O’Reilly Media

[3] DongZhe Ma, JianHua Feng, GuoLiang Li, “A Survey

of Address Translation Technologies for Flash

Memories”, ACM Computing Survey, 2014

[4] Sang-won Lee and Bongki Moon, “Design of Flash-

Based DBMS: An In-Page Logging Approach”, ACM

SIGMOD, 2007

[5] Hwanggyo Lee and Sang-won Lee, “Performance

Evaluation for MySQL Insert Buffer, KCC2016, 2016

http://mysqlserverteam.com/the-innodb-change-buffer/

