
SSD as SQLite Engine

Soyee Choi
SungKyunKwan University

Republic of Korea
ithdli@skku.edu

ACM Reference Format:

Soyee Choi. 2018. SSD as SQLite Engine. In Proceedings of 2018 Interna-

tional Conference on Management of Data (SIGMOD’18). ACM, New York,

NY, USA, 3 pages. https://doi.org/10.1145/3183713.3173720

1 INTRODUCTION

As a proof-of-concept for the vision “SSD as SQL Engine” (SaS

in short), we demonstrate that SQLite [4], a popular mobile data-

base engine, in its entirety can run inside a real SSD development

platform. By turning storage device into database engine, SaS al-

lows applications to directly interact with full SQL database server

running inside storage device. In SaS, the SQL language itself, not

the traditional dummy block interface, will be provided as new in-

terface between applications and storage device. In addition, since

SaS plays the role of the uni�ed platform of database computing

node and storage node, the host and the storage need not be seg-

regated any more as separate physical computing components.

Background During the last decade �ash memory SSDs have

relentlessly been replacing harddisks as the main storage because

of several advantages such as fast latency, high IOPS/$ and low

power consumption, especially in data centers running OLTP

workloads [7]. Despite of its di�erent characteristics from hard-

disk, short latency, and the consequent numerous opportunities

for optimizations, however, SSDs are mostly used as faster hard-

disks. Therefore, the data-intensive computing of database servers

are conducted in host, totally segregated from the SSD storage. Fur-

ther, between the database engine and the storage are barriered by

the heavy IO stacks of �le system and OS kernel, which are the

legacies developed in the era of slow harddisks and thus are not

suitable to the era of SSDs.

Problems The dichotomy of host and storage in modern com-

puter architecture has forced the data-intensive softwares to natu-

rally segregate their data processing from the storage. When SSDs

are used as the data storage, however, this design of segregating

the data processing logic far from the storage is not desirable at

least for three reasons: 1) the legacy IO stack overhead, 2) di�-

culties in vertical optimization, and 3) ine�ciency in architectural

and economical perspectives. We brie�y explain each in turn. First,

while the IO stack overhead in the existing �le systems and kernels

marginally contributes to the latency of data access in harddisks

(e.g., less than 3%), it is commonly said to be very signi�cant in

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4703-7/18/06.
https://doi.org/10.1145/3183713.3173720

SSDs with short data access latency (e.g., more than 30% in the

case of SSD from Samsung) [10, 12]. Second, while there are many

opportunities for vertical optimization between database engines

and SSD [6, 8, 11], the intervening IO stacks combined with the

dummy block IO interfacemake it extremely di�cult tomake them

to be seamlessly integrated. Although an e�ective and practical

vertical optimization solution is successfully embodied on top of a

speci�c �le system and kernel, it is still hard to become a generally

available solution unless other �le systems and kernels support

the same implementation. Last, the physical separation of host and

storage is not economical or architecturally elegant because bigger

physical space is required to accommodate them, more power is

consumed, and the storage interface device is necessary.

Motivation Any contemporary SSD itself is a computer

equipped with powerful CPUwith several cores and large memory,

which is enough1 to run enterprise-class database servers. Though

challenging and looking radical, the o�oading of a complete SQL

database engine into SSD would be a promising approach to obvi-

ate the problems due to the barriers of �le system and IO stack dis-

turbing between database engine and storage. That is, the o�oad-

ing moves database engine very close to the core �rmware called

FTL (�ash translation layer) and the data in �ash memory chips.

This in turn enables that both of database engine and storage are

tightly coupled through lightweight interfaces, thus bypassing the

heavy IO stacks and also exploring various vertical optimizations

between two layers much more easily and �exibly.

2 PROPOSED APPROACH AND UNIQUENESS

SSD as SQL Engine Based on the above motivation, we en-

vision the idea of “SSD as SQL engine” (SaS). That is, SSD itself

plays not only the conventiontional role of storage but also the

role of SQL engine, and database applications in other computing

nodes (e.g., Apache memcache) will now interact with SaS using

the SQL interface over the network. When the idea of SaS is real-

ized, the distinction of host and storage will be blurring and the

segregated host and storage will be replaced by one SaS device. In

this sense, the vision of SaS is an opposite extreme of the existing

segregation of database processing from storage. However, it is a

daunting task to realize the concept of SaS using enterprise-class

database engine such as MySQL/InnoDB engine. For this reason,

we have prototyped a simple version of SaS, “SSD as SQLite en-

gine”. As is detailed in Section 3, the SQLite database is a good

candidate for prototyping SaS with moderate endeavour, for sev-

eral reasons. First, its codebase is tiny enough to �t in rather lim-

ited DRAM in real SSDs. Second, because its IO is based on simple

1Of course, it has to be admitted that that the performance of CPU and DRAM inside
SSD is not yet comparable to that in the high-end servers.

Student Research Competition Posters SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1829

https://doi.org/10.1145/3183713.3173720
https://doi.org/10.1145/3183713.3173720


well-abstracted VFS interface [2], VFS can be implemented by ex-

tending FTL in SSD minimally. Third and most importantly, there

exists a good sample of vertical optimization in SaS [8].

RelatedWork andUniqueness In the sense that SaS o�oads

the database engine to the storage and comes with new interfaces,

at least two types of the existing work are closely related to SaS:

new SSD interfaces for database applications [8, 11] and the in-

storage-processing approach (ISP in short) [3, 5, 9]. But, both ap-

proaches are common in that only a speci�c core module or func-

tionality is o�oaded so that the main body of database engine

still reside in host side and has to interact with the storage device.

Therefore, they still su�er from the problems of the segregated ar-

chitecture of the computing node and the storage node. In contrast,

by o�oading an SQL engine in its entirety to the storage, SaS al-

lows to completely bypass the IO stack overhead in the existing

approaches and also enables to pursue further optimizations be-

cause SQL engine is moved to close to the storage.

3 SSD AS SQLITE ENGINE

Figure 1: Two SQLite Processing Architectures

Implementation Wehave implemented a prototype of SaS us-

ing a real SSD, which has a Marvel controller with 400 MHz ARM9

processor, and the controller contains 128 KB SRAM to store the

�rmware and 1 GB DRAM to store metadata such as mapping ta-

bles. In our current implementation, the SQLite runtime binary and

its heap memory reside in the DRAM area. The source code of a

SQLite written in C (SQLite 3.13 amalgamation version) was of-

�oaded down to the designated NAND �ash memory area in the

SSD. And, the boot loader of the SSD was modi�ed to load the

SQLite binary to a �xed DRAM location upon its booting. Thus, in

our SaS prototype, the SQLite engine, rather than the FTL module,

is mainly responsible for interfacing with the application using the

SQL interface. The vanilla FTL in the SSD was extended to support

the functionalities of a simple �le system, that is, the vfs interface,

so that the vanilla SQLite library is made easily portable to the

SSD with minimal change. The resultant “SSD as SQLite Engine”

architecture is presented in Figure 1(b), and, for comparison, the ex-

isting architecture of separated host and storage is also presented

in Figure 1(a). Thanks to the vertical optimization exploiting the

transactional atomicity in the extended FTL, our SaS can guarantee

the transactional atomicity without resorting to the heavy journal-

ing in the original SQLite. For this reason, note that the journal �le

is nomore necessary in our SaS prototype. The SQLite bu�er cache

is now located in DRAM area, together with the L2P (logical-to-

physical) address mapping information. The main goal in embody-

ing the preliminary SaS prototype was the tight integration of the

o�oaded SQLite and the existing FTL �rmware in the SSD. First of

all, for SQLite to work, the vfs layer is a key OS abstraction heav-

ily used in SQLite. Therefore, we had to implement vfs’s all the

interfaces using the existing FTL layer in the SSD. Next, to support

transactional atomicity without resorting to the costly journaling,

the FTL �rmware was extended to support atomic propagation of

one or more pages to the �ash memory chips, as in X-FTL [8].

Preliminary Evaluation Result In order to evaluate the ef-

fect of “SSD as SQLite Engine”, we have evaluated its performance

by running a simple update-intensive benchmark, AndroBench [1].

For comparison, we have also evaluated the performance of the

SQLite on host using the same benchmark. The host machine

used in the evaluation is a Linux system running on Intel core

i7-860 2.8GHz processor. Our SaS prototype can complete the An-

droBench benchmark 2x faster than the SQLite on host in terms

of IO time. Also, in terms of the internal write ampli�cation factor

(WAF) measured while running the benchmark, our SaS prototype

was 2.3x ormore e�cient than the SQLite on host. These results are

consistent with the observation made in X-FTL work [8]. This im-

pressive advantages of our SaS prototype can be explained mainly

for three reasons. First, our SaS prototype can avoid the redun-

dant journaling overhead so that it halves the amount of data to

be written while executing the benchmark. Second, our SaS proto-

type bypasses the �le system so that it does not cause additional

IOs for �le metadata which is not marginal in the SQLite on host.

Finally, our SaS prototype does not su�er from the IO stack over-

head while the original SQLite on host does.

4 SUMMARY AND FUTURE WORK

This paper proposes new radical database processing architec-

ture, “SSD as SQL Engine” (SaS) and proves its feasibility by pro-

totyping “SSD as SQLite Engine”. In addition, through a primitive

evaluation, we demonstrate its numerous bene�ts.

The preliminary work in this abstract is the very �rst step to-

wards our vision of “SSD as SQL Engine”. There are many chal-

lenging but intriguing technical issues ahead of us. To name a few:

• Wewill exploit further vertical optimizationswhich are now

possible with the “SSD as SQL Engine” architecture.

• Wewill investigate whether new query processing and opti-

mization techniques are possible under the SaS architecture.

• We will examine how to deal with concurrency. To support

multiple users/processes, we have to support session man-

agement from SaS and each SQL interaction from di�erent

application has to be assigned with its transaction id.

• Wewill study how to design the SQL interfaces between ap-

plications and SaS device. For an instance, we have to work

on how to e�ectively return a large amount of SQL result

from the SaS prototype to applications.

ACKNOWLEDGEMENTS

This research was supported by IITP under the “SW StarLab”

(IITP-2015-0-00314).

Student Research Competition Posters SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1830



REFERENCES
[1] 2011. AndroBench (SQLite Benchmark). http://www.androbench.org/wiki/

AndroBench. (2011).
[2] 2011. The SQLite OS Interface or VFS. https://sqlite.org/vfs.html. (2011).
[3] 2012. White paper: A Technical Overview of the Oracle Exadata Database Machine

and Exadata Storage Server. Technical Report. Oracle corp.
[4] 2017. Well-Known Users of SQLite. http://www.sqlite.org/\famous.html. (2017).
[5] Boncheol Gu, Andre S. Yoon, Duck-Ho Bae, Insoon Jo, Jinyoung Lee, Jonghyun

Yoon, Jeong-Uk Kang, Moonsang Kwon, Chanho Yoon, Sangyeun Cho, Jaeheon
Jeong, and Duckhyun Chang. 2016. Biscuit: A Framework for Near-data Process-
ing of Big Data Workloads. In Proceedings of the 43rd International Symposium
on Computer Architecture (ISCA ’16). IEEE Press, Piscataway, NJ, USA, 153–165.
https://doi.org/10.1109/ISCA.2016.23

[6] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. 2014. The
Multi-streamed Solid-State Drive. In 6th USENIX Workshop on Hot Topics in Stor-
age and File Systems (HotStorage 14).

[7] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Yang-Suk Kee, and Moonwook
Oh. 2014. Durable Write Cache in Flash Memory SSD for Relational and NoSQL

Databases. In Proceedings of the 40th SIGMOD International Conference on Man-
agement of Data (SIGMOD ’14). 529–540.

[8] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Gi-Hwan Oh, and Changwoo
Min. 2013. X-FTL: Transactional FTL for SQLite Databases. In Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data (SIGMOD
’13). ACM, 97–108.

[9] Woods Louis, Istvan Zsolt, and Alonso Gustavo. 2014. Ibex—An Intelligent Stor-
age Engine with Support for Advanced SQLO�-loading. Proceedings of the VLDB
Endowment (2014), 963–974.

[10] D. Nellans M. Bjørling, J. Axboe and P. Bonnet. 2013. Linux block IO: intro-
ducing multi-queue SSD access on multi-core systems. In Proceedings of the 6th
International Systems and Storage Conference ACM. p.22.

[11] Ravi Mayuram Kee. Yang-Suk Oh. Gihwan, Seo. Chiyoung and Lee. Sang-Won.
2016. SHARE Interface in Flash Storeage for Relational and NoSQL Database.
In Proceedings of the 2016 International Conference on Management of Data (SIG-
MOD ’16). 343–354.

[12] S.Swanson and A. Caul�eld. 2013. Refactor, reduce, recycle:Restructiong the I/O
Stack for the Future of Storage. Vol. 46. 52–59 pages.

Student Research Competition Posters SIGMOD’18, June 10-15, 2018, Houston, TX, USA

1831

http://www.androbench.org/wiki/AndroBench
http://www.androbench.org/wiki/AndroBench
https://sqlite.org/vfs.html
http://www.sqlite.org/�amous.html
https://doi.org/10.1109/ISCA.2016.23

	1 Introduction
	2 Proposed Approach and Uniqueness
	3 SSD as SQLite Engine
	4 Summary and Future Work
	References



